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I n  order to study the tidal generation and evolution of internal waves, both 
experimentally and theoretically, a two-dimensional two-layer model has been 
developed. The laboratory model consists of two immiscible fluid layers in a long wave 
tank, where time-dependent flow can be created by towing a suitably shaped obstacle 
with a sinusoidal motion. The effects of changing the Froude number and the ratio 
of the depths of the two fluid layers on the shape of the interface are studied. The 
first theoretical model considers the motion to be quasi-steady, allowing only a 
balance between buoyancy and inertial forces, and is in reasonable agreement with 
the experimental results for very slow motions and the initial phase of the tidal cycle 
only. A more complete numerical solution is based on the vortex-point method in 
which the interface is modelled by a set of discrete vortices, while the rigid boundaries, 
which include the obstacle, are modelled by a source distribution. The resulting 
governing equations are expressed in Lagrangian form, and the baroclinic generation 
of vorticity is related to  the generation of source density, through two simultaneous 
integrodifferential equations. For small Froude numbers, the experimental and 
numerical results are in good quantitative agreement. At large Froude numbers, the 
numerical solution, which does not consider mixing between the two layers nor 
boundary-layer separation from the obstacle, gives a slight difference in the position 
of the maximum interface displacement from that found in the experiment. 

1. Introduction 
The existence of large-amplitude internal waves in the ocean has been noted by 

several authors (Halpern 1971; Gargett 1976; Smith & Farmer 1977; among many). 
In  all cases it was clear that tidal interaction with bottom topography was the major 
source, although the exact sequence of events that  created the waves was not clear. 
I n  an initial attempt to study this problem, Lee & Beardsley (1974) constructed an 
experimental model in which they postulated the generation of such waves during 
that part of the tidal cycle when the flow was in the direction of wave propagation. 
This possibility was criticized by Maxworthy (1979), who studied, experimentally, 
tidally generated solitary waves over a three-dimensional ridge, simulating the 
internal waves produced by flow over Stellwagen Bank in Massachusetts Bay. 
Maxworthy proposed a somewhat different sequence of events that  leads to the 
production of an internal wave train. As the ebb tide proceeds, a depression, i.e. a 
lee wave, is formed behind the obstacle. The characteristics of this depression depend 
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on the basic density stratification, the shape of the obstacle and the magnitude and 
direction of the tidal current. As the ebb tide slackens, the depression, which has 
gained a large potential energy, moves upstream against the flow. As the depression 
propagates away from the obstacle it evolves into a number of solitary waves. The 
number and amplitude of these waves depend on the characteristics of the depression 
and basic density stratification. 

This generation mechanism has succeeded in explaining the production of solitary 
waves observed by Halpern (1971) and Chereskin (1983) in Massachusetts Bay and 
Gargett (1976) in the strait of Georgia. Also, the field observation of Apel and 
Holbrook (Apel & Holbrook 1980; Holbrook & Apel 1980) in the Sulu Sea and 
Osborne & Burch (1980) in the Andaman Sea support this mechanism as an 
explanation for the production of the internal-wave packets as shown for the former 
measurements by Liu (1982). 

It was suggested that this description was also applicable to some of the field 
observations by Smith & Farmer (1977) in Knight Inlet, as shown in the acoustic 
radar images of the flow over a sill in the fjord and the observation of solitary waves 
propagating away from this location. However, Farmer & Smith (1980) argued that 
there are probably a t  least two different generation mechanisms. The exact response 
of the flow over the sill mainly depended upon the stratification and the strength of 
the tidal currents. The first-generation mechanism involved the formation of an 
internal lee-wave train and the second involved the formation of a single lee wave 
behind the sill. The latter response is similar to the internal hydraulic jump discussed 
by Long (1954). In the former case lee-wave train formation was described as follows : 
the time-dependent interaction with boundary-layer separation occurred in the early 
stages of the tide, followed by the formation of lee waves that had a suitable form 
to suppress separation. Successive lee waves formed behind the first one. Their 
characteristics depend on the tidal current and stratification. As the tide slackened, 
the first wave propagated upstream, passing over the obstacle, and was replaced by 
new waves forming in the lee of the obstacle. These waves controlled the location of 
separation of the boundary layer by modifying the flow over the leeside of the sill. 
The waves travelled upstream as a packet and evolved either into turbulent breaking 
waves or solitary waves that obeyed the nonlinear dispersive theory. The main 
disagreement with Maxworthy ’s generation mechanism is whether the waves are 
generated by the disintegration of a single large depression or if during generation 
a train of lee waves is formed behind the obstacle as the flow velocity drops, which 
then propagate away from the obstacle. 

It will become clear from the work presented in this paper that Maxworthy’s 
generation mechanism is found to be valid experimentally for the range of parameters 
considered. We also show that this same mechanism can be found from a numerical 
model that replaces the interface in a two-layer fluid by a number of point vortices. 
In  more complex stratification than this, it  is likely that the lee-wave response will 
be more complex and that the sequence of events described by Farmer & Smith (1980) 
will exist. 

In  $2 we present a description of the laboratory experiments designed to model 
the production of internal-wave trains by a tidal flow over a two-dimensional 
obstacle. In $3  two theoretical models are presented. The first is a quasi-steady model 
based on the steady hydraulic flows discussed by Long (1954). In  the second, the 
vortex-point method is adopted and modified to fit the current problem, in particular 
to include the presence of irregular boundaries. In  $4 the experimental and numerical 
results are presented and compared. Finally, in $5 a discussion and interpretation 
of these results is presented. 
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FIGURE 1 .  Apparatus. For experimental convenience the geometry of the oceanic prototype has 
been inverted. The topographic feature floats in the upper surface while the equivalent of the mixed 
layer rests on the bottom of the tank. Tidal flow is simulated by towing the obstacle back and forth 
using a simple crank-connecting-rod arrangement. 

2. Apparatus and procedure 

A rectangular Plexiglas channel 8.6 m long, 20 cm wide, and 30 ern deep, as shown 
in figure 1, was used to maintain a stratified two-layer fluid. This stratification was 
produced by first filling the channel to the desired depth with the lighter fluid (water). 
The heavier fluid (a Freon-kerosene mixture of density 1.05 g/cm2) was then dyed 
and injected slowly through a funnel placed close to the bottom of the channel. 

The wave generator was made by bending a thin Plexiglas top over thicker 
Plexiglas sheets of the desired shape, that  formed the sides of the wave generator. 
The sides were painted black to  improve the quality of the photographs taken of the 
experiments. The wave generator was 86 cm long, with a maximum depth of 7.7  cm. 
When i t  was placed inside the channel, the wave generator extended laterally from 
one sidewall to the other, except for a small clearance at  each side to ensure a free 
movement. The wave generator could be filled with water to any level in order to 
control the level to  which i t  could be submerged. The generator was towed through 
a total stroke of 29 cm by a system of cables and pulleys connected to a simple 
crank-connecting-rod mechanism driven by a variable-speed motor. 

The wave motions that were created by towing the obstacle were observed by 
photographing the distortions of the dyed lower layer a t  known intervals of time after 
%he start of the motion, with a camera mounted on a trolley so that  all of the waves 
which were formed were within the field of view at all times. 

3. Development of the theoretical model 
3.1. The quasi-steady model 

To model the generation mechanism of the interfacial waves theoretically, we started 
by using a modification of the steady model developed by Long (1954). I n  his study 
of the motion of the steady flow of a two-fluid system over an obstacle, as shown 
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FIGURE 2. Hydrostatic steady model of two-layer flow over an obstacle. In  the quasi-steady theory 
of the lee-wave production by tidal flow it  is assumed that the steady flow a t  each value of the 
approach stream velocity exists a t  each instant in the unsteady flow. 

in figures 1 and 2, the assumptions of a very small density difference and a hydrostatic 
pressure distribution were used. We assumed that this steady model was valid a t  each 
instant of time in our unsteady flow. 

Introduction of the parameters H' = ( H -  hz0) h,,/H, the equivalent depth of the 
flow; q ( t )  = pU2(t)/(p,-p,)gH', the Froude number; h*(x)  = ( H - B ( x ) ) / H ,  a 
dimensionless depth of the obstacle a t  any location; a* = (h,, - h,(x) - B ( x ) ) / ( H -  h,,), 
the dimensionless amplitude of the disturbance a t  any location x ;  and finally 
R = h,,/H, the ratio of the depth of the two fluid layers, into the continuity and 
energy equation, yields upon some manipulation 

This equation relates the amplitude of the disturbance to the dimensionless depth 
of the flow, the Froude number and ratio of the depths of the two fluid layers. I n  
figure 3 the case of R = 0.6 and various values of Fr is presented. There are two sets 
of values of a* and h* a t  which all curves for different values of Fr meet. The first 
is at h* = h, = 4.2 ; here a* = 0, so that  the flow is unperturbed, i.e. the obstacle does 
not exist ( B  = 0). The second is at h = 0, where the obstacle blocks the flow 
completely. For the positive values of a*, the flow is subcritical and the interface drops 
over the obstacle. The solution for negative values of a* is valid when the flow is 
supercritical and the interface swells over the obstacle. For values of h* > h,, the 
height of the obstacle is negative ( B  < 0), i.e. the obstacle is actually replaced by a 
depression. The flow is supercritical for all positive values of a* and supercritical for 
all negative values of a*. 

To compare the results obtained from this quasi-steacly model with the experimental 
results, we assume that this steady solution can be applied a t  each instant of time, 
i.e. a t  each instantaneous value of Froude number, and a t  this instant the maximum 
amplitude was found. I n  figure 4 we present one case just to demonstrate the 
differences between the quasi-steady solution and t)he experimental results as a 
function of time. During the formation of the depression i t  seems that the experimental 
amplitude increases linearly with time, while the theoretical amplitude must take a 
shape that reflects the variations of Froude number. From this and other cases not 
presented in detail here it is clear that, while the theory might agree with the 
experiments for small times and for small Froude numbers, it  can newer reproduce 
the continuously increasing amplitude that was found even when the Froude number 
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FIQURE 3. Results from the steady equation for R = 0.6. Here the dimensionless amplitude 

a* and fluid depth L* are plotted with F, as parameter. 
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FIQURE 4. Comparison of the experimentally determined maximum amplitude a&, and the 
quasi-steady value as a function of time for R = 0.9 and maximum F, = 0.33. The curve of F J t )  
is also shown in order to indicate how its variation and a,*,(t) are closely related in this formulation. 

was decreasing. Order-of-magnitude estimates of the time to establish the flow over 
the obstacle indicate that it is small compared with the tidal period for both model 
and prototype. However, estimates of both an unsteady and a convective inertia term 
during the formation of the interface depression indicate that both are of equal 
importance, and so a quasi-steady model can never be appropriate. In  order to 
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improve our prediction the vortex-point method was adapted to solve the problem 
of the generation and evolution of interfacial waves numerically. 

3.2. The vortex-point method 

Rosenhead (1931) developed the vortex-point method in order to study Kelvin- 
Helmholtz instability, that  is the flow of uniform density p and velocity U ,  above 
a stream of the same density but velocity U in the opposite direction. The surface 
of discontinuity between the two layers was represented by a vortex sheet in the 
idealized model and was then replaced by a distribution of elemental vortices in the 
numerical calculations. The paths of the vortices were determined by a numerical 
step-by-step method, while the line joining these vortices, at any time, was assumed 
to be an approximation to  the actual shape of the surface of discontinuity. 

Zarodny & Greenberg (1973) used the vortex-point method to describe large- 
amplitude but non-breaking, two-dimensional, inviscid, incompressible, irrotational 
water waves. I n  their model, both the free surface and the flat bottom boundary were 
represented by vortex sheets. 

More recently, Baker, Meiron & Orszag (1980) have treated the problem of the 
growth of Rayleigh-Taylor instability to a large amplitude in an  inviscid, incom- 
pressible, layered flow. The vortex-point method was applied to  study the time 
evolution of an initial sinusoidal disturbance. The governing equations of motion were 
solved iteratively. The time-stepping was done using the implicit fourth-order 
Adams-Moulton method that requires only two time derivatives a t  each time step. 
The numerical results were in agreement with the results obtained by a conformal- 
mapping method. 

The work done by Baker et al. was a good starting point to investigate our problem 
of interest, namely the generation and evolution of interfacial waves in a stratified 
medium with a flat rigid boundary a t  the top and a moving obstacle a t  the bottom. 

3.3. Problem formulation 

The present flow is modelled by assuming i t  to be two-dimensional inviscid and 
incompressible while vorticity is generated a t  the interface owing to the existence of 
a tilted surface across which there is a density jump and shear. 

The density interface between the two fluid layers can then be represented by a 
vortex sheet, as shown in figure 5 (a). The normal velocity components are continuous 
across this curve, while there is a jump in tangential velocity components. This jump 
is the strength of the vortex sheet. The velocity of the sheet, defined as the average 
fluid velocity of a given point, is given by the Biot-Savart integral as a function of 
the vortex strengths and the relative positions of all of the other vortices. The 
equations of motion will be written in Eulerian form and then transformed into the 
Lagrangian form. 

2 = x+iy, (3.1) 

q = u+iv, (3.2) 

Let 

where 2 is the complex position vector of any vortex point and q is its complex 
velocity vector. The functions x and y are dependent on the Lagrangian variable e 
(see figure 5a; Baker et al. 1980, Lansing 1981) that  represents the interface and time 
T. Let 

r^ = u2s- UI,, (3.3) 

(3.4) u,n = u,n = u,, 
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FIGURE 5. (a )  Numerical model in which the interface is replaced by a series of vortices. ( b )  Defining 

sketch for regions used to dampen wave energy a t  the ends of the tank. 

where 9 is the vortex-sheet strength and U,, and U2, are the normal components of 
velocities and U2, and U,, the tangential velocities in the top and bottom layers at 
the interface. 

The distance measured along the vortex sheets is given by 

The Biot-Savart law is written as 

q*(s) = - 
27c -7 p Z(s) y(s" - Z(s') ds' (3.6) 

(P indicates the principal part of the integral). Here q* is the complex conjugate of 
the velocity q and 

while 
ds 
de Y = -7, 

(3.7) 

where y is the vortex strength in Lagrangian space and e is the Lagrangian variable. 
The next step is to find the evolution of y with time T ,  i.e. dy/dT. This is done by 
evaluating the momentum equation in the tangential direction on either side of the 
vortex sheet (i.e. the interface) as follows, in both Eulerian and Lagrangian forms. 
The Eulerian form for the top fluid layer is 

and that for the bottom layer is 

(3.9) 

(3.10) 
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Introducing the average tangential velocity 
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us = f (UlS+ UZS), (3.11) 

and transforming the momentum equations to the Lagrangian form, where 

d a  a a -=-+us-+ u,- 
dT i3T as an ’ 

(3.12) 

then dividing (3.9) by p1 and (3.10) by pz and subtracting, the following equation is 
obtained: 

Now converting to the Lagrangian variable e, this equation is written as 

(3.13) 

(3.14) 

This equation describes the relation between the pressure distribution and generation 
of vorticity. 

Eliminating the pressure term through some manipulation of these equations 
(Lansing 1981) yields 

dT 
(3.15) 

where A = (pl - p z ) / ( p l  + p z )  and the subscripts e and T represent differentiation with 
respect to these quantities. Then (3.15) becomes in complex form 

dT 

Also, the Biot-Savart integral can be written in the Lagrangian form as 

q*(e) = -- 

(3.16) 

(3.17) 

Accordingly, the acceleration of the vortex sheet is expressed as 

The total time derivatives are Lagrangian with respect to  the sheet velocity (u, v). 
The right-hand-side of (3.17) describes the baroclinic creation of vorticity. The two 
main effects included here are the creation of vorticity by gravity, and the generation 
of vorticity due to the tangential acceleration of the interface. Since the velocity 
components u and v are related to the vortex-sheet strength y through the Biot-Savart 
integral, (3.16) is an integro-differential equation for y.  Equations (3.16)-(3.18) 
describe the evolution of vorticity and the position of the vortices. 

The modelling of the boundaries 

The previous formulation is only valid for two superimposed layers of infinite 
depth. To model the boundaries, including the complex shape of the wave generator, 
the previous equations must be modified to  include their effects, the following 
assumptions being made, utilizing the solution given by Jaswon & Symm (1977). 
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( 1 )  The wave generator is represented by a rigid fixed obstacle a t  each time step 

(2) The flow over the obstacle is irrotational. 
(3) The obstacle perturbs the steady flow defined by its velocity potential @, and 

the perturbation potential is $. 
(4) The obstacle can be represented by a continuous distribution of sources of 

density v(R) a t  R E aB extending over a simple curve aB. These sources generate a 
simple layer potential that takes the form 

that has the surface aB. 

where Be is the infinite domain exterior to aB. The potential $(P) is continuous 
everywhere and has the asymptotic behaviour 

$(P) = O(lP12) as P-tm 

This means that the simple layer potential 4 ensures that the perturbation of the 
fluid flows decays to zero rapidly a t  infinity and applies only to subcritical flows. 

If $ is the perturbation potential, so that the resultant velocity potential is $ + $, 
the physical requirement that the component of fluid velocity, normal to the rigid 
boundary, must be zero implies that 

$’(P) = -$’(P) (PEaB). 

The source density v ( P )  is the unique solution of the integral equation 

where $‘(P) is the normal component of the perturbation potential. Define 

akax a$ay 
$1 = --+-- 

ax:n ayan 

ax ay - - u,-+v,- 
an an 

(3.19) 

(3.20) 

(3.21) 

(where u, and v, are the components of the velocity induced by the sheet a t  the 
boundary, and ax/an and ay/an are the direction cosines of the normal directed into 
the boundary B )  and taking into consideration the motion of the boundary in the 
x-direction, then 

ax ay 
@‘ = (u,+ U,,sinwT++v,- 

an an 
(3.22) 

Introducing the complex notation qg = u, - iu,, dZ,/de = dx,/de + i dy,/de, where 
Z,  is the complex position of the boundary, then 

- @’ = Im [Z,, {qg  + U, sin on]. (3.23) 

The first term of (3.19) can be rewritten as 

I n  two dimensions the kernel g(P, R )  takes the form 

(3.24) 

g(P, R )  = In IP- RI. (3.25) 
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Substituting into (3.24), 
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where 

Differentiating and substituting for x’ and y’, 

(3.26) 

(3.27) 

where x ,  y and the components of the vector P, and xR,  yR are the components of 
the vector R.  Equation (3.27) can be rewritten as 

g’(P, R )  = -1m - [ZI. (3.28) 

Substituting into (3.19), and using the Lagrangian frame of reference: 

1 [ j r(e’)de’ ] c ( e )  
Im [ZBe(qg + U, sinwT)] = -- Im ZBe P - +- (3.29) 

2 27t 
or 

(3.30) 

Away from the boundary cr(e) = O,ZB(e) = Z(e) and the boundary velocity U,sinwT 
will equal zero so that (3.30) becomes 

&(e) = -- (3.31) 

Note that qg is the modifying term to the interface velocity. 
The total velocity at the interface will be composed of two parts: the velocity of 

the vortex sheet found from the Biot-Savart integral, and the modifying velocity that 
is the velocity due to the source distribution of the rigid boundaries: 

y(e’) de’+- a(e’) de/ 
PZ(e)-Z(e’) 2x ‘ I  PZ(e)-ZB(e‘) 

q*(e) = -- (3.32) 

In  addition, the acceleration a t  the interface is the total time derivative of the 
previous equation, i.e. 

Equation (3.33) is a function of F and its time derivative, which is found by 
differentiating (3.32) with respect to time : 

1 drr(e‘)/dTde’ d 
-- + 2--q: + 2U, w cos WT . (3.34) 

-ZB(e’)I2 d T  
W e )  - 
d T  
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The velocity qg is found from the Biot-Savart integral at (xB,yB). Note that qg is 
the velocity of the flow a t  the boundaries: 

(3.35) 

or 

The acceleration of the boundaries, U,wcoswT, is the main contributing term to 
da(e)/dT, especially when dcr(e’)/dT, y(e’) and dy(e’)/dT are equal to zero a t  T = 0. 

Equations (3.16) and (3.36) are two simultaneous ordinary differential equations 
in dy/dT and du/dT, so that with the addition of (3.7), the evolution of vortex-sheet 
strength, its position and source density are well defined. 

3.4. The radiation conditions 

Owing to the need to confine the vortex sheet to a finite domain, we must take special 
precautions to prevent wave reflection from the ends of this region. This is 
accomplished by introducing very viscous boundary layers a t  each end of the channel 
as shown in figure 5 ( b )  to dampen the vortex strength, its vertical position y and 
density of the source. I n  these regions we assume 

U 3 = v--((x-L+d)2(y-h), 
dT d2 

d a  a 
(Z- L + d)’ CT, 

(3.37) 

(3.38) 

(3.39) 

where a is the internally computed dampening factor, d the dampening length and 
h the undisturbed depth of the interface. 

3.5. Numerical computations 

The first step of the numerical solution of the vortex-point method was the 
subdivision of the interface into small equal sections. These sections were simply equal 
intervals of plane curves. At each of the interval points, the position Z and the 
vortex-sheet strength were found. Initially, the undisturbed interface was represented 
by the complex vector 2, while y was assumed to be zero. 

To find the perturbation velocity and acceleration due to the presence of the wave 
generatop, the first step was the subdivision of the boundary (obstacle) aB into 
suitably small sections. In  two dimensions these sections were also equal, smooth 
plane curves. 

The best choice of the interval points was to include any corner of i3B or any point 
that  describes any change in i3B. This ensured that each section or interval was smooth 
so that the normal was well defined at  each nodal point, and so that a simple boundary 
condition applied within each interval. 

The numerical c-omputations proceeded as follows. First, the vortices were 
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distributed at  equal spacing a t  the interface. The same was done for the sources 
that represent the rigid boundaries. 

Initial values of y ,  a, dy/dT and da/dT were assumed to be zero. The velocity of 
the interface was then calculated using (3.32). Next, da /dT and dy/dT were 
calculated by iteration. The iteration began by calculating da/dT from (3.36), 
followed by the acceleration of the interface, as calculated from (3.33). The acceleration 
value was then substituted into (3.16) to  find dy/dT. The new value of dy/dT was 
then used to calculate the new value of da/dT, and the procedure was repeated until 
the errors in both dy/dT and du/dT were within the permissible limits. The radiation 
conditions were applied a t  each time step. After calculating the velocity of the 
interface, da/dT and dy/dT, the integration procedure followed by finding the new 
values, for these parameters, a t  the next time step. The time stepping was done by 
using the implicit fourth-order Adams-Moulton method. Because this method is not 
a self-starter, the first three time steps were computed by the Rung-Kutta method. 

The Adams-Moulton technique was found to be stable and fast. For each time step, 
only two evaluations of the time derivatives were required, compared with the four 
evaluations required for the Runge-Kutta method. The required computer memory 
is of the order of N+ N B ,  where N is the number of vortices and NB is the number 
of sources. About N2 arithmetic operations a t  each step are needed. The computer 
system used in these computations is the TOPS-20 a t  U.S.C. 

4. Experimental and numerical results 
4.1. Experimental results 

In  all cases considered, we will use the same definitions as in $ 3  for Froude number 
F, and the ratio R of depths. The limits of the ratio R, during experiments, were 
constrained by: ( a )  the depth of the Freon-kerosene mixture (2.90cm) and ( b )  the 
depth of the fresh-water layer (which was varied from 9.80 to 14.30 cm). The choice 
of the minimum fresh-water depth was based on the deepest section of the wave 
generator (7 .70  cm) to avoid blocking. The ratio R was varied for each experiment 
and could be measured to an accuracy of k0.005. The Froude number, since it is 
time-dependent, changes from zero to a maximum then back to zero again, for the 
one-half sinusoidal path ; while for the full-sinusoidal path i t  changes sign over the 
second half of the period of motion and the obstacle returns to its starting position. 

The experimental results presented in figures GlO are categorized according to : 
(1)  the ratio R ; (2) the maximum Froude number (computed a t  the maximum speed) 
for the same R ;  and (3) the motion history of the wave generator. For the sake of 
clarity, only one parameter was varied a t  a time. For instance, in figure 6, the obstacle 
was towed for one half-period of the sinusoidal path where R is kept a t  0.815 and 
the maximum Froude number a t  0.655. Figure 7 represents the motion for the same 
R and F, as in the previous case, but for the full sinusoidal path. Figure 9 shows the 
wave motion for R = 0.770 and maximum & = 0.670, for one-half of the sinusoidal 
path, while figure 10 shows the same case, but for the full sinusoidal path. I n  all cases 
we consider certain dependent variables which are characteristic of that  particular 
experiment, such as the wave amplitude, length, phase speed and growth rate, and 
whether or not mixing occurs. We then determine how these parameters vary as the 
independent parameters are changed. 

For the case of the full sinusoidal path, the wave amplitude is larger, the slope of 
the generated wave is steeper, the length of the wave front is longer, the phase speed 
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FIQURE 6. Experimental results for R = 0.815, maximum F, = 0.655 and one-half of a sinusoidal 
motion of the obstacle of full period 12.9 s. From top to bottom the photographs were taken 4.1, 
6.6, 8.8, 10.2, 14.6 and 18.9 s from the start of the motion. The dotted lines in this and the figures 
that follow represent the numerically determined surface shape as discussed in detail in 34.4, while 
the background scale has separations of 1 cm vertically and 2 cm horizontally. 
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FIGURE 7. Experimental results for R = 0.815 and maximum Fr = 0.655 for one full sinusoidal 
period of obstacle motion of period 12.9 s. Photographs were taken 1 .0, 2 .8 ,6 .1 ,8 .0 ,  12.2 and 26.0 s 
from the start of the motion. 
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FIGURE 8. Experimental results for R = 0.815, maximum Fr = 0.327 and one-half of a full sinusoidal 
period of 25.9 s. Photographs were taken 6.3, 8.8, 12.0, 17.4, 23.1 and 29.7 s from the start of the 
motion. 
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FIGURE 9. Experimental results for R = 0.770, maximum F, = 0.670 and one-half of a full sinusoidal 
period of 12.9 s. Photographs were taken 1.1, 2.3, 3.1, 4.5, 5.4, 9.0, 12.6 and 18.6 s from the start 
of the motion. 
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FIGURE 10. Same as figure 9, except for one fuIl sinusoidal period. Photographs were taken 7.8, 
8.6, 9.1, 10.1, 11.2, 15.3, 17h, 22.3 and 31.3 s from the start of the motion. 
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is larger, and the growth rate of the generated wave is higher than the half-path case. 
I n  both cases, shown in figures 9 and 10, mixing occurs. The case of full sinusoidal 
path, figure 10, shows the separation of two solitons. The phase speed for the case 
of the full sinusoidal path is larger than that of the half-path until the separation 
of the two solitons takes place, after which the phase-speed trend is reversed. 

To study the effect of the maximum Froude number on the wave motion, the 
maximum speed was varied while fixing R for one-half of the sinusoidal path. The 
wave motion in figure 8 should be compared with that in figure 6. It is observed that, 
as the maximum Froude number increases, the maximum amplitude also increases, 
while mixing occurs at the larger Froude number. 

To examine the effect of changing the ratio R only, two cases shown in figures 6 
and 9 are compared, since they have the same Froude number (approximately) and 
the same one-half sinusoidal path. The most significant observations are as follows: 

(1 ) mixing occurs in the cases of smaller R ; 
(2) the growth rate of the lee wave increases as R decreases; however, the reduction 

of the wave amplitude is clearly shown in the cases of smaller R due to the occurrence 
of mixing ; 

(3) the slope of the wave front increases as R decreases; 
(4) the wave amplitude increases as R decreases; 
(5) the number of waves generated increases as R is decreased. 

Consider the case where the r a t 6  R is kept at 0.770 and the maximum Froude number 
Frat  0.670. Figure 9 shows both the generation and the evolution of the internal waves 
when the obstacle is towed for one half-period of the sinusoidal path. Figure 10 then 
illustrates the continuation of the wave motion of figure 9 where the time recording 
begins during the second half of the obstacle motion to complete the sinusoidal path. 
Waves generated in this case have the maximum in the amplitude, slope, phase speed 
and growth rate. Mixing occurs in the lee of the obstacle as shown in both figures 
9 and 10. Also, the interaction of waves and intense mixing takes place on the other 
side of the obstacle only in the case of a full period of the sinusoidal path. 

4.2. Numerical results 
Having observed the wave generation and evolution experimentally, a comparison 
can be made with the numerical computations, based on the numerical integration 
technique previously presented in $3. The interface was modelled by 200 discrete 
vortices, while the boundaries, both a t  the top and the bottom, were modelled by 
a total of 200 sources. Placing the obstacle as a part of the bottom boundary provided 
some numerical convenience. The bottom boundary remained unchanged while the 
top rigid flat boundary was moved upward or downward depending on the ratio 
required. Accordingly, the position of the interface had to be moved upward or 
downward to maintain the correct depth of the two layers. 

The requirement that  the distance between any two consecutive vortices should 
be less than or equal to $ of the distance between any vortex point and its nearest 
boundary, dictated that the initial distance between any two consecutive vortices 
should be about 2 cm or less. Note that the minimum distance between any vortex 
point and a source was 2.9 cm. Consequently, the interface length was limited, in the 
computation, to 4 m. The section of interest was chosen to begin 50 cm downstream 
from the obstacle and to end 260 cm upstream of it to allow enough space for wave 
evolution. The length of the dampening layer was assumed to be 30 cm at each end 
of the channel. The arclength between any two consecutive sources was taken as 4 cm, 
and was kept constant. I n  all the cases modelled, the following variables were used : 
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FIGURE 11. Theoretical interface shape for R = 0.815, maximum F, = 0.655 and one-half of a full 
sinusoidal period of 12.9 s. The times for each figure are: (a )  4.0 s;  ( b )  8.0 s ;  (c) 11.0 s; ( d )  14.0 s; 
( e )  1.0 s. 

p1 = 1.0 g/cm3, pz = 1.05 g/cm3, and acceleration due to gravity g = 981 cm/s2. The 
size of the time step and the dampening factor a ,  were internally calculated by the 
computer program. It was found that the larger the Froude number, the smaller the 
time step should be for smaller computational round-off errors. 

To avoid the singularities that  might occur during the integration of the Biot-Savart 
integral, the integration was performed by evaluating the integrand a t  alternate sets 
of points using the trapezoidal rule. For example, when the velocity was determined 
a t  an odd point, point 1 say, the integration was performed for the following even 
points (e.g. points 2, 4, 6, . . .). Similarly, for an even point, the integration was done 
over all the odd points. 

Numerical differentiation (for quantities such as dZ/de) can be performed using 
first a cubic spline fit followed by differentiation. However, i t  was performed in this 
work using the forward-difference method for the first point, and the mid-difference 
method for any point thereafter except for the last point, where the backward- 
difference method was used. The iteration procedure, for Fredholm’s integral of the 
second kind, is always convergent provided that the interface, its vorticity and source 
density, of the rigid boundaries are all ‘smooth’. It was found that only 12 iterations 
were sufficient to obtain an accuracy for both the vortex strength and source density 
t o  four significant figures, which is the permissible error specified in both r and y .  

Furthermore, to avoid the possible wave instabilities that might occur during 
computations, a smoothing technique was used. This technique was developed by 
Longuet-Higgins & Cokelet (1978). The smoothing technique used two quadratic 
equations, provided that the displacement of the interface and its velocity were 
known at two times TI and T,. The same smoothing process was performed on the 
vortex strength and source density. 
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FIGURE 12. Theoretical interface shape for R = 0.815, maximum F, = 0.327 and one-half of a full 
sinusoidal period of 25.9 s. The times for each figure are: ( a )  4.5 s ;  (b)  9.0 s ;  (c) 11.6 s ;  (d )  17.0 S ;  

(e) 24.0 s. 

I 

FIGURE 13. Theoretical interface shapes for R = 0.770, maximum F, = 0.672 and one-half of a full 
sinusoidal period 12.9 s. The times for each figure are: (a) 1.0 s ;  ( b )  4.5 s ;  (c) 9.0 s ;  ( d )  15.0 S ;  (e) 17.0 S.  
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The three cases shown in figures 11-13 were chosen and solved numerically for an 
obstacle motion representing one-half of the sinusoidal path motion. I n  figures 11 and 
12 the maximum Froude number is 0.655 and 0.327 respectively, and R is kept 
constant a t  0.815. As in the corresponding experiments, the larger Froude number 
produces a larger wave and solitary waves. 

For figures 1 1  and 13 the maximum Froude number is the same (approximately), 
while R = 0.815 and 0.770 respectively. Again, the observations made from experi- 
ments show the same trend with larger waves a t  the smaller value of R. 

Although mixing occurs in the experimental results in figures 1 and 9, i t  must be 
eliminated in the corresponding numerical solutions shown in figures 1 1  and 13, in 
order to achieve convergence, which takes place only when the interface is smooth. 

5. Comparison between numerical and experimental results 
The comparisons between numerical and experimental results are superimposed on 

the experimental results shown in figures 6, 8 and 9. We see that even though the 
amplitudes are of comparable magnitude, there is a difference in the location of the 
maximum wave amplitude, with the interface position found from the numerical 
solution having the more advanced phase, in figures 6 and 9. I n  figure 8 we find 
agreement between amplitudes and phase speed, wave-front slope and the number 
of waves, indicating that for small Froude numbers the numerical solution is in 
complete agreement with the experimental results. However, for larger Froude 
numbers, there exists a small difference in phase-front location. The possible reasons 
for the difference in location can be explained as follows. 

( 1 )  The velocity of the wave generator (obstacle) was assumed ideally to take the 
form U = U,, sin wT,  where the variables U, and w were obtained from the driving- 
mechanism data. However, the ratio of crank to connecting-rod length was not small, 
resulting in a small deviation of the actual velocity form from the sinusoidal shape. 

(2) The bottom rigid boundaries in the numerical solution were assumed to  extend 
beyond the obstacle region. This assumption would affect the phase-speed accuracy 
through source density, since in the experiments the fluid acts as part of the 
boundary. 

(3) Modelling of rigid boundaries by a source distribution is based on the 
assumption of a steady flow passing over rigid boundaries. The problem treated in 
this work has moving boundaries with a time-dependent velocity. The source density 
will affect both the position and the velocity of the interface, which in turn affect 
the phase speed. 

(4) I n  the experiments the flow may separate from the back slope of the obstacle 
and present a modified body shape to the outer flow. Such an effect is not included 
in the numerical model. Also, viscous damping and mixing, which were not taken 
into account in the numerical calculations, act to  decrease the wave amplitude and 
hence the wave speed in the experiments. 

It is evident from the above comparison that there exists, in general, good 
qualitative and quantitative agreements between the experiments and the numerical 
simulation. The vortex-point method is a relatively new approach, which can provide 
a good description and understanding of the complex phenomena of generation and 
evolution of internal-wave trains in the oceans and the atmosphere under appropriate 
circumstances. 
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6. Discussion and conclusions 
Based on the results presented in the previous sections, which to a large extent 

are self-explanatory, we discuss briefly the major findings of this work as follows. The 
basic mechanisms of wave generation and evolution can be seen in figures 6-10. As 
the tidal flow passes over the obstacle, a single depression is formed in the lee. The 
characteristics of this depression depend on the characteristics of the flow, i.e. the 
Froude number, and the ratio of depths of the fluid layers, as well as the characteristics 
of the obstacle. The simplest case occurs when the amplitude of the depression is such 
that no breaking or mixing takes place. Increasing the maximum Froude number and 
decreasing the ratio R of the depths of the two fluid layers will cause mixing. 
Consequently, the amplitude of the depression will not be well defined, and only an 
estimate of its value can be made. 

As the velocity of the obstacle decreases, the depression that has gained a large 
phase speed with respect to the moving fluid, i.e. a large increase in its kinetic and 
potential energy, will move upstream against the flow, where i t  loses some of its 
kinetic energy. Depending on the phase speed of the depression, the path of the 
obstacle, and the length of the obstacle, the depression may or may not interact with 
another depression which can be formed on the other side of the obstacle during the 
obstacle’s return motion to its original position. 

Similar observations on this phase of motion were reported by Gargett (1976) in the 
study of large pulses of well-mixed fluid passing over the crest of a submarine ridge 
on the slackening tide. The pulses created internal waves, and the mixing process was 
so intense that a well-defined stratification did not occur over the submarine ridge. 

As the depression front propagates away from the obstacle, i t  evolves into a number 
of internal waves. The internal waves are ordered, in sequence, by their amplitude. 
The number of internal waves and their amplitude depend on the characteristics of 
the basic flow and the depression formed. 

Farmer & Smith (1980) suggested that the generation of internal wave packets start 
with a separation of the boundary layers followed by the formation of either a single 
massive lee wave or a train of lee waves depending on the stratification and the 
strength of the tidal current. 

The sequence of wave motion presented in this study is in agreement with 
Maxworthy (1979), where only one single depression formed behind the obstacle. No 
observations of a lee-wave train were made, almost certainly because the ranges of 
tidal current and stratification values used are limited. 

An attempt to use a quasi-steady hydraulic model was not successful and was 
superseded by a numerical model consisting of a well -defined interface between two 
constant-density fluid layers that  were bounded by two rigid boundaries, one of which 
was flat and fixed and the other irregular and moving with a sinusoidal velocity. The 
numerical solution was based on the vortex-point method in which the interface was 
described by a set of discrete vortices. The baroclinic generation of vorticity in the 
interface was caused by the existence of a density difference and shear. The flat rigid 
boundary modified the vertical motion of the interface, while the irregular boundary, 
including the moving obstacle, acted as a flow-perturbing source. The final governing 
equations to be solved were two simultaneous integro-differential equations, which 
primarily yielded the displacement of the interface a t  different times. 

The phase-speed and amplitude results of the model were found to be in complete 
agreement with the experimental data a t  small Froude numbers. However, the results 
diverse slightly in the location of the maximum amplitude only when the Froude 
number becomes large, for the same ratio R. 
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An additional attempt was made to check the accuracy and the applicability of 
the model by comparing the results of a special problem with a known solution from 
linear theory. We considered the case of two fluid layers bounded by flat boundaries 
with no shear. The interface was given an initial sinusoidal perturbation and the 
motion of the wave crests were calculated. The difference in phase speed between 
linear theory and the numerical calculation was found to be in the order of 9 yo. 

In conclusion, the motion of internal waves cannot be accurately described by a 
simple quasi-steady buoyancy-inertia balance only ; rather, the model should take 
into account all time-dependent parameters that affect the motion. The vortex-point 
method has provided a promising approach to the problem and enhanced the 
understanding of the generation and evolution of internal waves. 

The work described here were performed at  the University of Southern California 
under ONR Grant N00014-76-G9211. Casey deVries built the apparatus, and his help 
is greatly appreciated. The help of Dr Gregory Baker of the University of Arizona 
on the application of the vortex-point method is gratefully acknowledged. 
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